NUMBER SETS

Math Facility

SET IDENTITIES

Sets: $P,Q,R$
Universal Set $I$
Compliment:$P^{'}$ 
Proper subset: $P\subset Q$
Empty Set $\phi$
Union of sets: $P\cup Q$
Intersection of sets: $P\cap Q$
Difference of sets: $P\setminus Q$ 
1. $P\subset I$      
     
2. $P\subset P$

3. $P=Q$ if $P\subset Q$ and $Q\subset P$

4. Empty Set
     $\phi \subset P$

5. Union of Sets 
     $R=P\cup Q=\{x|x\in P\:or\: x\in Q \}$

6. Commutativity  
     $P\cup Q=Q\cup P$

7. Associative 
     $P\cup (Q\cup R)=(P\cup Q)\cup R$

8. Intersection of Sets
     $C=P\cap Q=\{x|x\in P\:and\: x\in Q \}$

9. Commutativity
     $P\cap Q=Q\cup P$

10. Associative
     $P\cap (Q\cap R)=(P\cap Q)\cap R$

11. Distributivity 
     $P\cup (Q\cap R)=(P\cup Q)\cap (P\cup R)$
     $P\cap (Q\cup R)=(P\cap Q)\cup (P\cap R)$

12. Idempotency 
     $P\cap P=P$
     $P\cup P=P$

13. Domination 
     $P\cap \phi=\phi$
     $P\cup I=I$

14. Identity 
    $P\cup \phi=P$
    $P\cap I=P$

15. Compliment 
    $P^{'}=\{x\in I|x\not\in P\}$

16. Compliment of Intersection and Unions 
    $P\cup P^{'}=I$
    $P\cap P^{'}=\phi$

17. De Morgan's Laws 
    $(P\cup Q)^{'}=P^{'}\cap Q^{'}$
    $(P\cap Q)^{'}=P^{'}\cup Q^{'}$

18. Difference of Sets 
    $R=Q\setminus P=\{x|x\in Q\: and \: x\not\in P\}$

19. $Q\setminus P=Q\setminus (P\cap Q)$

20. $Q\setminus P=Q\cap P^{'}$

21. $P\setminus P=\phi$

22. $P\setminus Q=P\:if\:P\cap Q=\phi$

23. $(P\setminus Q)\cap R=(P\cap R)\setminus (Q\cap R)$

24. $P^{'}=I\setminus P$

25. Cartesian Product 
      $R=P\times Q=\{(x,y)|x\in P\: and\: y\in Q\}$

SETS OF NUMBERS
Natural Number:$N$
Whole Number:$N_{0}$
Integer:$Z$
Positive Integer:$Z^{+}$
Negative Integer:$Z^{-}$
Rational Integer:$Q$
Real Integer:$R$
Complex Numbers:$C$

26. Natural Numbers 
      Counting Numbers:$N=\{1,2,3,...\}$

27. Whole Numbers
      Counting Numbers and zero:$N_{0}=\{0,1,2,3,...\}$  

28. Integers 
      Whole numbers and their opposites and zero:
      $Z^{+}=N=\{1,2,3,...\},$
      $Z^{-}=N=\{...,-3,-2,-1\},$
      $Z=Z^{-}\cup \{0\}\cup Z^{+}=\{...,-3,-2,-1,0,1,2,3,...\}$

29. Rational Numbers 
      Repeating or terminating decimals:
      $Q=\{x|x=\frac{a}{b}\: and\: a\in Z\: and\: b\in Z\:and\: \neq 0\}$

30. Irrational Numbers 
      Nonrepeating and nonterminating decimals:
      $Q^{'}=\{x|x\neq\frac{a}{b}\: and\: a\in Z\: and\: b\in Z\:and\: \neq 0\}$

31. Real Numbers
      Union of rational and irrational numbers:
      $R=Q\cup Q^{'}$

32. Complex Numbers 
      $C=\{x+iy|x\in R\: and\: y\in R\},$
      where i is the imaginary unit.

33. $N\subset Z\subset Q\subset R\subset C$

BASIC IDENTITIES 
Real Numbers:$a,b,c$

34. Additive Identity
    a+0=a 

35. Additive Inverse 
    a+(-a)=0

36. Commutative Of Addition
    a+b=b+a

27. Associative Of Addition
    (a+b)+c=a+(b+c) 

38. Definition Of Subtraction 
    a-b=a+(-b)

39. Multiplicative Identity 
    a.1=a 

40. Multiplicative Inverse 
    $a.\frac{1}{a}=1,a\neq 0$

41. Multiplication Times 0
    a.0=0

42. Commutative Of Multiplication 
    a.b=b.a 

43. Associative Of Multiplication 
    (a.b).c=a.(b.c)

44. Distributive Law 
    a(b+c)=ab+ac

45. Definition of Division 
      $\frac{a}{b}=a.\frac{1}{b}$

COMPLEX NUMBERS
Natural number:n
Imaginary Number:i
Complex Number:z
Real part:a,c
Imaginary part:bi,di
Modulus of a complex number:$r,r_{1},r_{2}$
Argument of a complex number:$\theta,\theta_{1},\theta_{2}$
46.
$i^{1}=i\quad\: i^{5}=i \quad\quad i^{4n+1}=i\\
i^{2}=-1\quad i^{6}=-1 \quad i^{4n+2}=-1\\
i^{3}=-i\quad i^{7}=-i \quad i^{4n+3}=-i\\
i^{4}=1\quad\: i^{8}=1 \quad\quad i^{4n}=1$

47. z=a+bi
48. Complex Plane














49. (a+bi)+(c+di)=(a+c)+(b+d)i

50. (a+bi)-(c+di)=(a-c)+(b-d)i

51. (a+bi)(c+di)=(ac-bd)+(ad+bc)i

52. $\frac{a+bi}{c+di}=\frac{ac+bd}{c^{2}+d^{2}}+\frac{bc-ad}{c^{2}+d^{2}}i$

53. Conjugate Complex Numbers 
    $\overline{a+bi}=a-bi$

54. $a=rcos\theta ,b=rsin\theta$

55. Polar Presentation of Complex Numbers
    $a+bi=r(cos\theta+isin\theta$

56. Modulus and Argument of a complex Number 
    If a+bi is a complex number, then 
    $r=\sqrt{a^{2}+b^{2}}$(modulus),
    $\theta=arctan\frac{b}{a}$(argument).

57. Product in Polar Representation
    $z_{1}z_{2}=r_{1}(cos\theta_{1}+isin\theta_{1}).r_{2}(cos\theta_{2}+isin\theta_{2})$
               $=r_{1}r_{2}[cos(\theta_{1}+\theta_{2})+isin(\theta_{1}+\theta_{2})]$

58. Conjugate Numbers in Polar Representation
    $\overline{r(cos\theta+isin\theta)}=r[cos(-\theta)+isin(-\theta)]$

59. Inverse of a Complex Number in Polar Representation 
    $\frac{1}{r(cos\theta+isin\theta)}=\frac{1}{r}[cos(-\theta)+isin(-\theta)]$

60. Quotient In Polar Representation 
    $\frac{z_{1}}{z_{2}}=\frac{r_{1}(cos\theta_{1}+isin\theta_{1})}{r_{2}(cos\theta_{2}+isin\theta_{2})}=\frac{r_{1}}{r_{2}}[cos(\theta_{1}-\theta_{2})+isin(\theta_{1}-\theta_{2})]$

61. Power of a Complex Number
    $Z^{n}=[r(cos\theta+isin\theta)]^{n}=r^{n}[cos(n\theta)+isin(n\theta)]$

62. Formula "DE Moivre"
    $(cos\theta+isin\theta)^{n}=cos(n\theta+isin(n\theta)$

63. Nth Root of a Complex Number 
    $\sqrt[n]{z}=\sqrt[n]{r(cos\theta+isin\theta)}=\sqrt[n]{r}(cos\frac{\theta+2\pi k}{n}+isin\frac{\theta+2\pi k}{n})$
    where k=0,1,2,...,n-1

64. Euler's Formula

    $e^{ix}=cosx+isinx$