Processing math: 0%

NUMBER SETS

Math Facility

SET IDENTITIES

Sets: P,Q,R
Universal Set I
Compliment:P^{'} 
Proper subset: P\subset Q
Empty Set \phi
Union of sets: P\cup Q
Intersection of sets: P\cap Q
Difference of sets: P\setminus Q 
1. P\subset I      
     
2. P\subset P

3. P=Q if P\subset Q and Q\subset P

4. Empty Set
     \phi \subset P

5. Union of Sets 
     R=P\cup Q=\{x|x\in P\:or\: x\in Q \}

6. Commutativity  
     P\cup Q=Q\cup P

7. Associative 
     P\cup (Q\cup R)=(P\cup Q)\cup R

8. Intersection of Sets
     C=P\cap Q=\{x|x\in P\:and\: x\in Q \}

9. Commutativity
     P\cap Q=Q\cup P

10. Associative
     P\cap (Q\cap R)=(P\cap Q)\cap R

11. Distributivity 
     P\cup (Q\cap R)=(P\cup Q)\cap (P\cup R)
     P\cap (Q\cup R)=(P\cap Q)\cup (P\cap R)

12. Idempotency 
     P\cap P=P
     P\cup P=P

13. Domination 
     P\cap \phi=\phi
     P\cup I=I

14. Identity 
    P\cup \phi=P
    P\cap I=P

15. Compliment 
    P^{'}=\{x\in I|x\not\in P\}

16. Compliment of Intersection and Unions 
    P\cup P^{'}=I
    P\cap P^{'}=\phi

17. De Morgan's Laws 
    (P\cup Q)^{'}=P^{'}\cap Q^{'}
    (P\cap Q)^{'}=P^{'}\cup Q^{'}

18. Difference of Sets 
    R=Q\setminus P=\{x|x\in Q\: and \: x\not\in P\}

19. Q\setminus P=Q\setminus (P\cap Q)

20. Q\setminus P=Q\cap P^{'}

21. P\setminus P=\phi

22. P\setminus Q=P\:if\:P\cap Q=\phi

23. (P\setminus Q)\cap R=(P\cap R)\setminus (Q\cap R)

24. P^{'}=I\setminus P

25. Cartesian Product 
      R=P\times Q=\{(x,y)|x\in P\: and\: y\in Q\}

SETS OF NUMBERS
Natural Number:N
Whole Number:N_{0}
Integer:Z
Positive Integer:Z^{+}
Negative Integer:Z^{-}
Rational Integer:Q
Real Integer:R
Complex Numbers:C

26. Natural Numbers 
      Counting Numbers:N=\{1,2,3,...\}

27. Whole Numbers
      Counting Numbers and zero:N_{0}=\{0,1,2,3,...\}  

28. Integers 
      Whole numbers and their opposites and zero:
      Z^{+}=N=\{1,2,3,...\},
      Z^{-}=N=\{...,-3,-2,-1\},
      Z=Z^{-}\cup \{0\}\cup Z^{+}=\{...,-3,-2,-1,0,1,2,3,...\}

29. Rational Numbers 
      Repeating or terminating decimals:
      Q=\{x|x=\frac{a}{b}\: and\: a\in Z\: and\: b\in Z\:and\: \neq 0\}

30. Irrational Numbers 
      Nonrepeating and nonterminating decimals:
      Q^{'}=\{x|x\neq\frac{a}{b}\: and\: a\in Z\: and\: b\in Z\:and\: \neq 0\}

31. Real Numbers
      Union of rational and irrational numbers:
      R=Q\cup Q^{'}

32. Complex Numbers 
      C=\{x+iy|x\in R\: and\: y\in R\},
      where i is the imaginary unit.

33. N\subset Z\subset Q\subset R\subset C

BASIC IDENTITIES 
Real Numbers:a,b,c

34. Additive Identity
    a+0=a 

35. Additive Inverse 
    a+(-a)=0

36. Commutative Of Addition
    a+b=b+a

27. Associative Of Addition
    (a+b)+c=a+(b+c) 

38. Definition Of Subtraction 
    a-b=a+(-b)

39. Multiplicative Identity 
    a.1=a 

40. Multiplicative Inverse 
    a.\frac{1}{a}=1,a\neq 0

41. Multiplication Times 0
    a.0=0

42. Commutative Of Multiplication 
    a.b=b.a 

43. Associative Of Multiplication 
    (a.b).c=a.(b.c)

44. Distributive Law 
    a(b+c)=ab+ac

45. Definition of Division 
      \frac{a}{b}=a.\frac{1}{b}

COMPLEX NUMBERS
Natural number:n
Imaginary Number:i
Complex Number:z
Real part:a,c
Imaginary part:bi,di
Modulus of a complex number:r,r_{1},r_{2}
Argument of a complex number:\theta,\theta_{1},\theta_{2}
46.
i^{1}=i\quad\: i^{5}=i \quad\quad i^{4n+1}=i\\ i^{2}=-1\quad i^{6}=-1 \quad i^{4n+2}=-1\\ i^{3}=-i\quad i^{7}=-i \quad i^{4n+3}=-i\\ i^{4}=1\quad\: i^{8}=1 \quad\quad i^{4n}=1

47. z=a+bi
48. Complex Plane














49. (a+bi)+(c+di)=(a+c)+(b+d)i

50. (a+bi)-(c+di)=(a-c)+(b-d)i

51. (a+bi)(c+di)=(ac-bd)+(ad+bc)i

52. \frac{a+bi}{c+di}=\frac{ac+bd}{c^{2}+d^{2}}+\frac{bc-ad}{c^{2}+d^{2}}i

53. Conjugate Complex Numbers 
    \overline{a+bi}=a-bi

54. a=rcos\theta ,b=rsin\theta

55. Polar Presentation of Complex Numbers
    a+bi=r(cos\theta+isin\theta

56. Modulus and Argument of a complex Number 
    If a+bi is a complex number, then 
    r=\sqrt{a^{2}+b^{2}}(modulus),
    \theta=arctan\frac{b}{a}(argument).

57. Product in Polar Representation
    z_{1}z_{2}=r_{1}(cos\theta_{1}+isin\theta_{1}).r_{2}(cos\theta_{2}+isin\theta_{2})
               =r_{1}r_{2}[cos(\theta_{1}+\theta_{2})+isin(\theta_{1}+\theta_{2})]

58. Conjugate Numbers in Polar Representation
    \overline{r(cos\theta+isin\theta)}=r[cos(-\theta)+isin(-\theta)]

59. Inverse of a Complex Number in Polar Representation 
    \frac{1}{r(cos\theta+isin\theta)}=\frac{1}{r}[cos(-\theta)+isin(-\theta)]

60. Quotient In Polar Representation 
    \frac{z_{1}}{z_{2}}=\frac{r_{1}(cos\theta_{1}+isin\theta_{1})}{r_{2}(cos\theta_{2}+isin\theta_{2})}=\frac{r_{1}}{r_{2}}[cos(\theta_{1}-\theta_{2})+isin(\theta_{1}-\theta_{2})]

61. Power of a Complex Number
    Z^{n}=[r(cos\theta+isin\theta)]^{n}=r^{n}[cos(n\theta)+isin(n\theta)]

62. Formula "DE Moivre"
    (cos\theta+isin\theta)^{n}=cos(n\theta+isin(n\theta)

63. Nth Root of a Complex Number 
    \sqrt[n]{z}=\sqrt[n]{r(cos\theta+isin\theta)}=\sqrt[n]{r}(cos\frac{\theta+2\pi k}{n}+isin\frac{\theta+2\pi k}{n})
    where k=0,1,2,...,n-1

64. Euler's Formula

    e^{ix}=cosx+isinx