TOPOLOGY
Let\; X\; be\; non \;empty\; set\; and\; \tau\; be\; the\; family\; of\; subsets\; of\; X.\;
We\; say\; \tau\; is\; topology\; on\; X,\; if\; and\; only\; if
Let\; X\; be\; non \;empty\; set\; and\; \tau\; be\; the\; family\; of\; subsets\; of\; X.\;
We\; say\; \tau\; is\; topology\; on\; X,\; if\; and\; only\; if
1. \;\phi\;, X\; \in \;\tau
2. \;Arbitrary\; union\; of\; members\; of\; \tau\; belongs\; to\; \tau
3. \;Finite\; intersection\; of\; members\; of\; \tau\; belongs\; to\; \tau
NOTE:
NOTE:
\star\; X\; is\; called\; ground\; set\; and\; its\; elements\; are\; called\; points.\;
\star\; The\; sets\; in\; \tau\; are\; open\; sets.\;
\star \;Union\; of\; two\; toplogical\; space\; may\; or\; may\; form\; toplogical\; space
\star \;Intersection\; of\; two\; toplogical\; space\; always\;form\; toplogical\; space
Examples:
\star \;Union\; of\; two\; toplogical\; space\; may\; or\; may\; form\; toplogical\; space
\star \;Intersection\; of\; two\; toplogical\; space\; always\;form\; toplogical\; space
Examples:
1.\;P(X)=\tau\; [Discrete\; Topology/Largest\; Topology ]
2.\;\tau=\{\phi,X\}\; [Indiscrete\; Topology/Smallest \;Topology ]
3.\;[Cofinite\; Topological\; space]
\bullet\tau=\{\phi\; and\; subsets\; of\; X\; whose\; Complements\; are\; finite\}
\bullet\tau=\{\phi\; and\; subsets\; of\; X\; whose\; Complements\; are\; finite\}
4.\;[Cocountable\; Topological\; space]
\bullet\tau=\{\phi\; and\; subsets\; of\; X\; whose\; Complements\; are\; countable\}\;
\bullet\tau=\{\phi\; and\; subsets\; of\; X\; whose\; Complements\; are\; countable\}\;
5.\;Usual\; Topological\; Space
\bullet \tau=\{Union\; of\; open\; intervals\; in\; \mathbb{R}\}
\bullet\tau=\{Union\; of\; open\; Discs\; in\; \mathbb{R^2}\}
\bullet\tau=\{Union\; of\; open\; spheres\; in\; \mathbb{R^3}\}
6.\; Upper\; Limit\; Topology
\bullet\tau=\{Unions\; of\; open-closed\; intervals\; (a,b]\}
7.\; Lower\; Limit\; Topology
\bullet\tau=\{Unions\; of\; closed-open\; intervals\; [a,b)\}
Coarser/Weaker Topological Space:
Let\;\tau_{1},\;\tau_{2}\;be\;two\;topological\;spaces\;and\;if\;\tau_{1}\subseteq \tau_{2}\;
then\;\tau_{1}\;is\;said\;to\;be\;Coarser/Weaker\;topological space\;
Finer/Stronger Topological Space:
Let\;\tau_{1},\;\tau_{2}\;be\;two\;topological\;spaces\;and\;if\;\tau_{1}\subseteq \tau_{2}\;
then\;\tau_{2}\;is\;said\;to\;be\;Finer/Stronger\;topological space.
Incomparable Topological Spaces
Let\;\tau_{1},\;\tau_{2}\;be\;two\;topological\;spaces\;and\;if\;neither\;\tau_{1}\nsubseteq \tau_{2}\;nor
\;\tau_{2}\nsubseteq \tau_{1}\; then\;\tau_{1},\;\tau_{2}\;are\;Incomparable\;topological\; spaces.\;
Relative Topology
If\; (X,\tau)\; is\; topological\; space\; and\; A\subseteq X\;
Let\; \tau_{A}=\{A\cup U:U\in \tau\}\; is\;relative\;topology\;and\;(A,\tau_{A})\;is\;topological\;subspace.
NEXT
Coarser/Weaker Topological Space:
Let\;\tau_{1},\;\tau_{2}\;be\;two\;topological\;spaces\;and\;if\;\tau_{1}\subseteq \tau_{2}\;
then\;\tau_{1}\;is\;said\;to\;be\;Coarser/Weaker\;topological space\;
Finer/Stronger Topological Space:
Let\;\tau_{1},\;\tau_{2}\;be\;two\;topological\;spaces\;and\;if\;\tau_{1}\subseteq \tau_{2}\;
then\;\tau_{2}\;is\;said\;to\;be\;Finer/Stronger\;topological space.
Incomparable Topological Spaces
Let\;\tau_{1},\;\tau_{2}\;be\;two\;topological\;spaces\;and\;if\;neither\;\tau_{1}\nsubseteq \tau_{2}\;nor
\;\tau_{2}\nsubseteq \tau_{1}\; then\;\tau_{1},\;\tau_{2}\;are\;Incomparable\;topological\; spaces.\;
Relative Topology
If\; (X,\tau)\; is\; topological\; space\; and\; A\subseteq X\;
Let\; \tau_{A}=\{A\cup U:U\in \tau\}\; is\;relative\;topology\;and\;(A,\tau_{A})\;is\;topological\;subspace.
NEXT